

 Navigation

 	
 index

 	wicked.haufe.io latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/wickedhaufeio/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/wickedhaufeio/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	wicked.haufe.io latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _images/oauth2-icon-64.png

_images/health-api.png
i g
Portal Health API

This is the internal Health AP of this API Portal. Use
this for monitoring purposes.

Information »

_images/blue-green-2.png
LOAD BAl

BLUE

10123

GRI
V24
101.2.4

APIS

_images/companion-json-editor.png
PREVIEW MODE -- Content Setting (clicK £t content »
to change)

Show Title Panel (Jumbotron)

©) Omit Content Container div(class="container") , provide
your own

Page Title (also used in <head>):
New Gontent

Sub Title (for jumbotron):

Edit the file with whatever editor you like, then change the settin

May contain Markdown

Required Group:

<none>

deploying-to-production.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Deploying to Production

Docker

Docker Swarm

TODOs

		[] Create a first draft of the page

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/plugin-configuration.png
Plugin Configuration

This section is for configuring plugins for the entire AP, e.g. over all Plans for the API. If you want to configure
plugins depending on which plan/subscription the use has chosen, please head over to the configuration of the
Plans instead.

Logging

Logging configuration

Check this option if you want to use standard logging to stdout in the Kong container. If you want
other/custom logging, you can to uncheck this option and configure a custom plugin below (not the file-
Tog plugin though).

File log path:
Jusrfiocal/kong/logs/kong-access.log

O Rate Limiting

) CORS

O Other Plugins.

versioning-strategies.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Configuration Versioning Strategies

Introduction

Depending on the structure of the underlying API services, you will need to follow different versioning strategies for the configuration repository. The API Portal always assumes that the configuration is stored within a source code repository, but still you have different ways of actually versioning the configuration and promoting changes between environments (dev, test, prod). The actual implementation of the API Portal takes place using a git repository, so there may be a certain bias towards git, but there are no actual obstacles which would prevent you from using SVN, TFS, Rational or CVS (don’t).

The following strategies always assume you are having a three-tier system setup, but is nonetheless applicable to other kinds of systems with a different number of environments as well.

Additionally, these strategies are not mandatory in any way; if you need to implement a different strategy, feel free to do so. This is only meant as guidance.

Continuous Integration and Deployment

In cases where you have set up deployment and testing to be fully automatic, chances are you have already adopted a CI/CD strategy, and you can do that for the API Portal as well:

[image: CI/CD Versioning]

At every push to the master branch a deployment takes place, first to the DEV environment, then subsequently to the other environments, using a packages artefact, and using always the same artefact (e.g. zipped configuration repository or similar). Between each deployment step environment specific tests are performed to make sure functionality is kept as it should be. This means all testing should be as automatic as possible to ensure this model works as intended.

Gates between environment deployments can be manual (click of a button) or automatic (as soon as tests pass, deployment can propagate to next environment).

Deployment pipelines like illustrated above can be implemented with most CI/CD systems. At Haufe we have set up this kind of systems using ThoughtWorks’ go.cd [https://www.go.cd].

Techniques Involving Merging

In case your backend services are not deployed continuously, but rather in explicit releases, versioning strategies involving explicit merging of changes may be of interest to you. The following sections describe two feasible versioning strategies.

Versioning via Branches

From desktop development versioning strategies the following strategy may be known:

[image: Versioning with Branches]

All development takes place in a “dev” branch, which is then subsequently merged (on the same repository) to downstream branches. This is not the “git” way of doing things, but may work better if you are using other source control systems. Especially TFS makes a good match for this kind of branching and merging, as cherry picking is a lot simpler than using git (which does not really allow for cherry picking).

As soon as the changes hit a target branch, a deployment should take place; either using automatic triggers, or manually. Hint: Automatic is good.

Versioning via Forks

A way of achieving an effect like the above using the git toolbox would be to keep the configuration for different environments in different forks of a “dev” repository:

[image: Versioning with Forks]

Changes are then propagated either using explicit cross-origin fetches and merges, or using pull requests. Pull Requests can be used to have a manual review process of the changes before propagating them to the next environment. Hint: Automatic testing is better than manual reviewing :-)

Caveats

When implementing a versioning strategy which involves manual merging and/or accepting pull requests, make sure that

		There are no differences in the intended end result of the configuration, i.e. you should still keep all the settings for all environments in all repositories/branches.

		You can move towards a CI/CD kind of deployment strategy for the long term

Alarm bells should shriek if you have actual differences in configuration for different environments which cannot be changed via environment variables or using the built-in environment mechanisms.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/content-viewmodel.png
View Model

Use the following JSON data to try out different states of your page, .g. with or
without authuser defined. Please note that this is only applicable for Jade pages,
not for Markdown.

“Daniel Developer”,
"daniel@developer. con"

"New Content",
"subTitle": "Edit the file with whatever editor you like,
then change the settings using the Preview here.",
“omitContainer": false,
"showTitle": true,
"glob": {
"network": {

http",
"api..mycompany . com" ,
"portalHost": "mycompany.com"

¥
¥

1)

Apply Viewmodel

_images/plugin-rate-limiting.png
Plugin Configuration

%I Rate Limiting

Rate limiting configuration

One of these fields must be filled (we won't check, but it will fail when deploying). Prefer shorter periods over
longer periods in case you might need to redeploy/re-init the Kong database. That would rest in reset rate.
limiting periods. Recommendation: Stick to hours or smaller.

Requests per second:

Requests per minute:

Requests per hour:

100

Requests per day:

Requests per month:

Requests per year:

Additional Settings
Async: Setto true tospeed up at cost of accuracy.
Continue on error: Proxy requests even if Kong cannot reach its DB.

auth-google.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Configuring Google Login

Introduction

The API Portal can use Google for federating user logins to the API Portal. Users which are logged in using Google Social Login will automatically be registered for full use of the API Portal:

		The primary email address which is used with Google is taken as a verified email address in the API Portal automatically (the user is auto-verified)

		The API Portal will explicitly ask for permission to access to the email address

		Name and email address are automatically retrieved from Google

		The ID from Google is used as a unique id (prepended with GitHub:) in the API Portal

This is probably a good fit for public facing developer API Portals, as most people tend to (also) have a Google Account.

Step 0: Prerequisites

You need the following things:

		A running kickstarter, pointing to your configuration repository

		The fully qualified domain name (FQDN) of your API Portal(s)

		A valid Google Developer account with access to the Google Developer Console [https://console.developers.google.com]

Step 1: Create a Google Project and activate the needed Google APIs

In the Google Developer Console at console.developers.google.com [https://console.developers.google.com] you will need to create a new Project (or re-use an existing one). Follow the on-screen instructions to do that. The Project should reflect that you are doing something for the API Portal, so suitable names should involve the name of your API Portal.

This is much similar to the concept of “Applications” in the API Portal itself, but more elaborate.

For this Project, you will need to activate two Google APIs:

		Google Identity and Access Management (IAM) API

		Google+ API

This can be done using the “ACTIVATE API” button on top of the Dashboard page.

Step 2: Register your API Portal(s)

To register an application (your API Portal in this case) to be able to log in using Google, perform the following steps:

		On the left side of the developer console, click the “Credentials” tab/pane

		Click the blue button “Create credentials” and select “OAuth Client Id”

[image: Create Google credentials]

		Select “Web application” as the client type and specify a Client name, e.g. MyCompany API Portal - Dev or similar

		Specify the callback URL as the FQDN of your API portal, plus /callback/google, e.g. https://domain.mycompany.com/callback/google:

[image: OAuth Client Spec]

		Click the “Create” button, and you will be presented the Client ID and Client Secret you will need for Step 3:

[image: Client ID and Secret]

Notes:

		You will need separate applications for separate instances, e.g. for Dev, Test and Prod; each have a different set of credentials

		By registering a localhost callback URL, you can register a separate local testing application; this works just fine if you are in a developer setup
		You could also register a DNS name you have specified in your /etc/hosts (or on Windows, HOSTS file) with Google. As OAuth 2.0 is a purely client side redirect flow, this will also work just fine, as long as your local browser is able to resolve the DNS name.

		Combine this with a localhost or development environment for most flexibility.

Step 3: Configure the API Portal

Next, you need to configure the API Portal to know the Google credentials. To do that, open up the kickstarter on the Authorization Page [http://localhost:3333/auth], and tick the “Use Google Authentication” check box:

[image: Kickstarter - Google]

Make sure you are using the “Use environment variable” checkbox to enable:

		Having multiple Client IDs and Secrets for multiple environments

		Encrypting the Client ID (tick the “Encrypt” checkbox for this value) in the configuration repository

To learn more about deployment enviroments, see the documentation on that.

Now all you have to do is to check in your changes to source control and redeploy your API Portal(s). Google social login should now be working.

FAQ

		Nothing so far.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/google-step1-1.png
GoogleAPIs

API

EE

?

APl Manager

Dashboard
Library

Credentials

Credentials

Credentials OAuth consent screen Domain verification

APlkey

Identifies your project using a simple API key 1o check quota and access.
For APls like Google Translate.

OAuth client ID

Requests user consent so your app can access the user's data.

For APls like Google Calendar.

Service account key
Enables server-to-server, apprlevel authentication using robot accounts.
For use with Google Cloud APIs

Help me choose
Asks a few questions to help you decide which type of credential o use.

or de

configuring-kong-plugins.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Configuring Kong Plugins

Introduction

In case you have to change something when proxying a request via the API Gateway, you can do that via Kong Plugins. Some of the functionality which the API Portal provides out of the box are actually - under the hood - leveraging Kong’s plugin mechanism. This applies foremost to the authentication mechanisms (via API Key or OAuth2), where the plugins key-auth, acl(Access Control Lists) and/or oauth2 are automatically configured to achieve the desired effect (i.e. protecting the backend API against unauthorized calls).

Kong’s modus operandi

Mashape Kong knows, very coarsely speaking, three different entities which it works with for configuration:

		APIs

		Consumers

		Plugins

APIs are the entities Kong uses to know which end points to proxy to which backends. This is what you configure when you define APIs for use with the API Portal.

For Kong, Consumers are entities which can be used when applying plugins to API routes. Kong is agnostic to what kind of Consumer may be behind (e.g. “User”, “Application”,...), this is up to the API Gateway operator to decide. For the wicked API Portal, consumers map to API Subscriptions, i.e. a combination of an API, an Application and an API Plan.

In order to achieve desired effects on the API routes, e.g. rate limiting or access control, Kong makes use of Plugins. Most plugins can either be applied to an API, to a Consumer, or to a combination of both (which then applies the plugin for a specific API for a specific consumer).

In most cases, you will not need to bother very much about the explicit configuration of the plugins, as the API Portal does this for you, but there are some things which are important.

Which Plugins are used out of the box

The following plugins are used by the API Portal “under the hood”, and MUST NOT be configured multiple times:

		key-auth

		acl

		oauth2

In order to achieve the functionality of the API Portal and Gateway, the Kong adapter works as follows:

		For each API, configure an Access Control List (the acl plugin) and set it to contain only a group called exactly as the API

		For each subscription in the API Portal
		Create a consumer named after the API and Application it is for (e.g. my-app$users-api)

		When using API keys, add the key-auth plugin for this consumer, so that passing in the API Key as a header will immediately identify this consumer when calling the backend

		When using OAuth 2.0 Client Credentials, add the oauth2 plugin, so that the token which is issued can be used to identify the Consumer which was created

		Add the consumer to the acl group of the API for which the subscription is valid

		In case the subscription plan has a plugin defined, this plugin is also added to the API, giving the consumer_id as a restriction for the plugin; this enables having e.g. different rate limiting settings for different consumers/subscriptions, depending on the API Plan.

This mechanism ensures that each API key can only be used for one subscription to one API (for one application).

Supported Plugins

The API Portal kickstarter has support for selected Kong Plugins, for which there exists a simple way to configure them. These are the following plugins:

		Logging (only API level)

		Rate Limiting

		CORS (only API level)

To some extent, also the request-transformer plugin is supported, which makes it possible to add or delete specific parts of requests, e.g. adding headers.

The plugin configuration can be found for both Plans and API Kong Configurations. This is supported in the kickstarter:

[image: Plugin Configuration]

Logging

To be discussed, I am not happy with this.

Rate Limiting

The rate limiting plugin documentation is partly self documenting in the kickstarter; for more information also see the plugin documentation [https://getkong.org] on Mashape’s Kong pages:

[image: Rate Limiting Plugin]

CORS

[image: CORS Plugin]

Other Plugins

If you need addition Plugin Configuration, you can use the kickstarter’s “Other Plugins” functionality. It just lets you edit the JSON configuration of the plugin section of an API or Plan. This means you obviously have to know to write a correct configuration, according to the Kong plugin documentation.

There are currently two special things which kickstarter can help you with: Adding specific headers using the request-transformer plugin; this is described below.

[image: Other Plugins]

The Forwarded Header

Use the “Add Forwarded Header” in order to configure Kong to always send a Forwarded header, following the RFC 7239 [https://tools.ietf.org/html/rfc7239] recommendation. This will make the API Gateway always add a header in the following form:

Forwarded: host=api.yourcompany.com;proto=https;prefix=/apiprefix;port=443

Adding Basic Auth to the Backend Service

Using the same plugin, kickstarter can also be used to define a Authorization: Basic ... header for backend authorization. It works in a similar way as the Forwarded header, with the following difference: The header value is not directly written into the configuration, but is (as it’s a credential), put into an environment variable:

[image: Plugin for Basic Auth]

The environment variable can in turn be reviewed in the “Environments” section, where you both can change the value of the variable, or define alternate values for different environments, e.g. if you use different credentials for different environments:

[image: Basic Auth in Environments]

The kickstarter will by default encrypt the credentials, which probably makes sense.

Other Kong Plugins

Other Kong Plugins can be used to achieve other behaviors, such as

		Whitelisting

		Blacklisting

		Rate Limiting over data size

		...

Future Work

If you need configuration UI for other plugins, please raise an Issue.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

static-configuration.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Contents of the static configuration

 © Copyright 2016.
 Created using Sphinx 1.3.5.

continuous-deployment.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Continuous Integration/Continuous Deployment

The API Portal is designed to be built up of immutable servers in the following sense: Everything which is not “user supplied” data, such as user accounts, applications and subscriptions, is considered static configuration, and cannot be changed after the deployment. If you need to change a configuration setting, such as API definitions or User groups, you will need to redeploy the API Portal with the updated configuration.

This is intended behavior, but it does mean that you will have to set up a real CI/CD system for your API Portal. If you have little or no experience with this, the API Portal may be a useful testing object, and if you already have such a system in place, the API Portal should fit in quite nicely.

The advantages of immutable servers are quite striking:

		Configuration Drift is impossible: Any configuration of the system is contained in source control; you cannot change a running system without redeploying from scratch

		You are always able to spin up a new instance from scratch, which makes a good (albeit not perfect) desaster recovery plan

		The approach forces you to automate deployments, which is very important to make the CI/CD approach work

The API Portal can be deployed continuously using different approaches, which have some differing properties:

		Simple deployment using docker-compose

		Test Deployments using the dynamic configuration of the target system

		Blue/green deployment of the entire system

The API Portal has a deployment API which can be used to extract and import the dynamic configuration (see also the deployment architecture of the API Portal); depending on your requirements in terms of downtime and availability, you need to use this API, or not.

The following documentation assumes that you are familiar in the use of the following tools and that you have an environment up and running:

		Docker

		Docker’s docker-compose

See also:

		Deploying Locally

		Deploying to Production

		Configuration Versioning Strategies

Deployments without the deployment API

Deployments not leveraging the deployment API are very simple and straightforward, but do not allow you to do zero-downtime upgrades. In some cases, this will not be a big issue, in some other cases it may be. For development and testing purposes, this may be enough though, and in some cases, also production systems can be updated using this mechanism, as the expected downtimes are mostly very short (under a minute usually).

Simple deployments using docker-compose

This section assumes that you have successfully deployed your API Portal to a docker environment, and you now want to update the system in some way. The most common scenarios are the following:

		Update of the static configuration (configuration repository)

		Update of the API Portal components (API Portal system)
		The API Portal itself

		The Kong API Gateway

As described in the deployment guideline, you will have a docker-compose.deploy.yml file you use to

		Build the static configuration container,

		Deploy the API Portal and Gateway to a Docker host

This file is the base for each deployment or update/upgrade of the API Portal.

Updating the static configuration

In order to update the static configuration, you will have to perform the following steps using docker-compose against your Docker host (which runs your API Portal):

		docker-compose -f docker-compose.deploy.yml build: This will build the static configuration image, this is the same step as described in the deployment guide. You will need to set the REPO_HOST, REPO_CREDS and REPO_PATH environment variables correctly for this to work. Please note that the configuration is only build into the docker host, it is NOT pushed to a registry (and should not be either!)

		docker-compose -f docker-compose.deploy.yml rm -fv portal-api-data-static: This removes the previous static configuration container (which is mounted into the portal-api container)

		docker-compose -f docker-compose.deploy.yml up -d --remove-orphans portal-api-data-static: This creates and starts the configuration container so that it’s available for the portal-api during the next step. Note that this container immediately stops (the entrypoint is /bin/true), as it’s a data only container.

		docker-compose -f docker-compose.deploy.yml up -d --remove-orphans --force-recreate: This restarts the API Portal using the new configuration container; as soon as this command has finished (plus a couple of seconds), your API Portal should be back up again.

All docker-compose calls assume that you have set all the necessary environment variables as described in deploying to production.

This method will cause a downtime of 15-120 seconds for both the API Portal and the API Gateway, depending on the size of the deployment and the speed of the Docker host you are deploying your system to.

Updating the API Portal Components

An update of the API Portal components is actually very straightforward, as you only have to make sure the latest docker images are pulled prior to redeploying the API Portal as in the above section. This can easily be done using

docker-compose -f docker-compose.deploy.yml pull

Continue as in “Updating the static configuration” above. Like in the above case, this is an update which entails a certain amount of downtime, and as such should perhaps not be used for production deployments.

In most cases, an update of the API Portal components (which usually include the Kong Gateway and the Postgres component) will not require you to remove the data volume which is used by Postgres to store runtime information for Kong. In some cases, an upgrade of the data schema is necessary though, but these cases will be described thoroughly in API Portal release notes as soon as they occur. As long as you stick to a given version of the API Portal components, you can be sure not to encounter such a situation.

Help! My Portal API throws errors at startup

The portal-api container will do a sanity check at first startup, to make sure the dynamic configuration (which is persistent in the dynamic data container) matches the (possibly) new static configuration. The following things are checked:

		Do all API definitions refer to valid API Plans?

		For all subscriptions in the dynamic configuration:
		Does the subscription plan exist in the static configuration?

		Is the subscription plan valid for the subscribed API?

		Does the API for which there is a subscription exist in the static configuration?

If any of these sanity checks fail, the portal-api container will refuse to start.

Deployments leveraging the deployment API

The deployment API

Each API Portal deployment comes with a predefined deployment API which is exposed over the API Gateway endpoint. The Swagger documentation of the end point is included in the source code. All end points of the API require authorization, via the following header:

Authorization: <deployment key>

Whereas the <deployment key> is the encryption key you created using the kickstarter (see creating a portal configuration).

The deployment API exclusively is able to retrieve the dynamic data of the API Portal; the static configuration (from the configuration repository) is not deployable using the deployment API, and this is by design like this (and not likely to change). Everything which is part of the configuration repository has to be deployed using an actual deployment of the API Portal; only the dynamic data (users, applications and subscriptions and some more things) is considered here.

NOTE: The deployment API endpoint has rate limiting activated, limiting the amount of calls to 25 per minute. Subsequent calls will be answered with a 429 response code. This is implemented in this way to protect the portal-api container from DDoS attacks.

Exporting dynamic data

A dynamic data export is performed in a number of steps; the exporting process is asynchronuous, and consists of the following steps:

		POST to the api.yourdomain.com/deploy/v1/export endpoint; in case of success, you will get a 201 response containing an exportId.

		Continuously poll the /deploy/v1/export/<exportId>/status endpoint until you receive a 200 response. Expect the processing to take up to several seconds; don’t poll more often than every 2-5 seconds; otherwise you will risk in hitting the rate limit of the deployment end point. Check the API documentation for an explanation of other possible response codes (including failures).

		Download the application/octet-stream via the /deploy/v1/export/<exportId>/data endpoint; the endpoint will not render a filename, you will have to specify one yourself using an appropriate download mechanism
		The /deploy/v1/export/<exportId>/data endpoint will, in addition to the binary data, send a X-SHA256-Hash header containing the SHA256 hash (in hex) of the archive file. You SHOULD verify this hash using e.g. openssl or similar.

IMPORTANT: Please note the following constraints of the export API:

		There can only be a single running export process at a given moment. Trying to POST another time to the /deploy/v1/export endpoint subsequently render 409 (conflict) response codes.

		After initiating an export via posting to the /deploy/v1/export endpoint, the API Portal will go into “read only” mode in the following sense: All write access to the dynamic configuration, such as a user creating a new application, or a user signing up, will be rejected. Reading any information from the portal will still work, and the API Gateway is not affected in any away

		The read only state can be reset by one of the following actions
		Issue a DELETE on the /deploy/v1/export/<exportId> end point; this will unlock the global lock of the API Portal (user interaction is possible again)

		After a timeout of 60 seconds, the global lock is lifted automatically.

The rationale for the read only behavior lies in the expectation of the API Portal to be discarded after the export has taken place, in order to be replaced by a “GREEN” instance (see below for a discussion of BLUE/GREEN deployments) in the course of the next couple of seconds. If it wasn’t, the portal assumes something has gone wrong and resumes normal operation after 60 seconds.

In case you want to use the export endpoint to create backups for the dynamic configuration (which is a perfectly valid use case), you would by default issue the DELETE described above to immediately after downloading the archive end the readonly state of the API Portal.

Content of the export archive

All dynamic data of the API Portal are stored as regular files in the dynamic data container, and the exporting process is only little more than performing the following operations on the server data location:

		tar cfz tmp/export_yymmddhhmmss.tgz --exclude='tmp/*' *

		openssl enc -aes-256-cbc -salt -k '$(PORTAL_CONFIG_KEY)' -in export_yymmddhhmmss.tgz -out export_yymmddhhmmss.tgz.enc

Whereas yymmddhhmmss is the current date and time. By reversing this process you can extract and inspect the content of the dynamic data archive:

		openssl enc -aes-256-cbc -k $(PORTAL_CONFIG_KEY) -d -in <yourfile.tgz.enc> -out <yourfile.tgz>

		tar xfz yourfile.tgz (or similar)

Calculating the SHA256 Hash of a file

In order to verify that the archive which was downloaded was correctly downloaded, you must verify the SHA256 hash of the download. As described above, the X-SHA256-Hash contains the SHA256 hash which the API Portal calculated. You can use the following command line to calculate the SHA256 hash locally:

openssl dgst -sha256 -hex <yourfile.tgz.enc>

If you want to create the hash digest in JavaScript, see the source code for the deployment.

Example Code

The portal-tools source code directory contains source code in node.js which illustrates how to implement a client for the export deployment API.

Importing dynamic data

Similar to the exporting API, there exists an importing API which is able to import dynamic data from another API Portal instance. It’s usage is similar, but it consists only of two different end points: The deploy/v1/import endpoint, and an endpoint to check the state of the importing process, deploy/v1/import/<importId>/status.

In order to trigger a data import, POST an exported archive to the deploy/v1/import endpoint, passing the SHA256 digest hash in hex format in an additional X-SHA256-Hash header (see also the Swagger documentation of the endpoints). The Authorization header has to be set to the deployment key; please note that this currently implies that the deployment key of both instances has to be identical (this may change in the future).

The import endpoint will return a JSON structure containing an importId, which in turn can be used to retrieve the status of the importing process. The import process is asynchronous; that an import archive is accepted for processing be the deploy/v1/import end point does not mean the import has succeeded, but rather that the SHA256 hash was validated and that the archive file was received correctly.

After retrieving the importId, the deploy/v1/import/<importId>/status end point must be used to retrieve the status of the importing process. Similar to when starting up the Portal API after a fresh deployment of an updated static configuration, the API Portal will do a sanity check of the combination of static and dynamic data, e.g.

		Are all APIs for which there are subscriptions in the dynamic data present?

		Do the API Plans match the subscriptions?

		Etc.

After the initial sanity check has been performed, the API Portal will continue to deploy the dynamic configuration to the Kong instance of the API Management Solution. This is done by posting an appropriate webhook event, which will be picked up by the Kong adapter. Only after all webhook events have been processed correctly, the status endpoint will return a 200 status code (for a discussion of possible response codes see the Swagger documentation).

Test Deployments

The deployment API of the API Portal can be used to implement “Test Deployments” in the following sense to make sure the probability that a deployment will succeed is as high as possible:

		Instanciate a testing/temporary environment where you deploy your desired static configuration (from your configuration repository)

		After the deployment of this environment has succeeded, extract the dynamic configuration from the running instance using the export API; don’t forget to “cancel” the export to not keep the running instance in read only mode for longer than necessary

		Import the dynamic data into the temporary environment and check the results of the deployment (“import”) to make sure it will work

		After this, you may quite safely do a simple update of the static configuration as described further up on this page.

This technique can be used to ensure that the static and dynamic data (subscriptions and user data) are compatible. In fact, this is similar to the following section on Blue/Green deployments, just leaving out the extra Load Balancer, and NOT ensuring zero-downtime releases.

Blue/Green Deployments

As an extension of the above technique, you can also implement blue/green deployment of the API Portal. Blue/green deployment is an idea which is specifically used most easily with stateless services, as they require services to be independent of each other, and/or you need to implement other mechanisms around your deployment (gossip protocols, import/export). Most parts of the API Portal are in fact stateless and immutable, so this works fairly well. This section describes how to leverage the Deployment API to implement a blue/green deployment strategy.

Prerequisites: This technique requires you to be able to switch IP addresses for DNS entries easily; usually this is done using some kind of load balancer, such as the Azure Load Balancer, or (on AWS) the Elastic Load Balancer. The following guideline does not address implementation specific details regarding this; please confer to the specific documentation for that.

Initial Deployment

The following image depicts the initial deployment of an environment which has been set up to be deployed using blue/green deployment:

[image: API Portal Deployment]

The components of the API Portal have been abstracted away into a single box, which in turn contains Kong, the Portal UI, the Portal API and so on.

Deploying a new version

Create the Green environment

In order to deploy a new version of the API Portal (v23 to v24), you will first instanciate an entirely new instance of your docker Host environment. This can either be a dynamically instanciated docker Host (or Swarm cluster, depending on your setup), or it can be a statically defined identical environment as the one which is running Blue:

[image: Instance Green Environment]

The new green environment has the given static configuration (v24) and may contain updated API Portal components. The endpoints of the APIs configured in the API Portal point to the very same backend APIs as the Blue environment. The only difference between the two systems is that the Green environment has an empty dynamic configuration, i.e. there are no users, applications or subscriptions.

Please note that the Green environment should listen to exactly the same Hosts as the Blue end point; the traffic routing takes place in the frontend load balancer.

Export and import the Dynamic Config

In a next step, the dynamic configuration is exported from the Blue environment (using the Deployment API described above), and is subsequently deployed to the Green environment via the deploy/v1/import endpoint.

[image:]

Important: To make this work, you will have to explicitly access the Green environment’s IP address, specifying the Host you want to talk to explicitly using your import/export implementation. This is usually just specifying the correct Header. Otherwise the Green environment will NOT answer to the requests (you will be rendered a 503 response by the HAproxy component). The export will work as-is, over the load balancer, but the import will not.

Follow the instructions above on importing a dynamic configuration to make sure the dynamic data matches the new version of the static configuration.

Test the new environment

The next step is somewhat optional, but recommended. To make sure the new instance and version of your API Portal still works as intended, run some end-to-end tests on your APIs to make sure that the API Gateway works as intended. Usually this will consist of some pinging of each backend API. It may obviously be the case that your API Portal runs as intended, but still the end-to-end connection from load balancer via API Gateway to your APIs in the backend has some hiccup, and this should be checked before doing the Load Balancer switch from Blue to Green:

[image:]

Now switch the route in your Load Balancer from Blue to Green; traffic will now be routed via Green instead of Blue.

Deleting the Blue environment

Now you’re set and done to destroy or deactivate the Blue environment, so that you end up with the following picture, and Green will be your next “Blue”:

[image:]

You don’t necessarily have to actually destroy the old Blue environment, but depending on the infrastructure you are running on, you can at least shut it down to save on infrastructure costs. It is though advisable to actually set up your docker environment from scratch each time, so that you can be sure of being able to do a disaster recovery purely from code (infrastructure as code), even if the API Portal deployment does not need it.

Caveats with Blue/Green Deployments of the API Portal

Due to the fact that the API Portal is deployed totally from scratch (phoenix deployment), and the Postgres database which Kong uses to store runtime data is also reconstructed totally from the dynamic and static configuration, the following things have to be kept in mind when doing Blue/Green deployments of the API Portal:

		OAuth Tokens are invalidated: If you are using OAuth securing of APIs, any currently used OAuth Access Tokens are rendered invalid after the deployment. Clients (using some OAuth client SDK or library) are usually anticipating this and will simply request a new token.

		Rate limiting quotas are reset: Currently used rate limits on specific APIs are reset at a Blue/Green deployment, or better said: Are not present in the new deployment of the database. To remedy this, try to use as short time periods as possible (minutes/hours instead of weeks/months) when specifying rate limiting plugins on APIs or Plans.

This is list is subject to change as the implementation of the API Portal continues. It is not ruled out that the deployment process in the future will be able to also migrate OAuth tokens, and/or other types of deployments are supported, e.g. where Kong/Postgres/Cassandra is treated in a more standalone kind of way (as a microservice in itself), and not as a part of the API Portal. In those cases, both the OAuth issue and the Rate Limiting issue could be remedied, as the Postgres instance is long-running (except in very special cases). Work on this topic would be happily merged into this repository (in the form of code and/or documentation/guidelines).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/blue-green-3.png
LOAD BAl

BLUE

deployment-environments.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Using Deployment Environments

Introduction

For most larger deployments of an API Portal, you will not only have a single deployment of the portal, but rather multiple ones. At least this is how the API Portal is built up and is intended to be used. Depending on how you set up continuous deployment for your API Portal, your mileage may vary, but the main ideas should be the same.

This is a typical deployment scenario spanning three different environments of the API Portal and the services behind:

[image: Deployment Environments]

Obviously, the configuration of the API Portal and API Gateway depends on the deployment environments; typical things which differ between the portals and gateways are (but are not limited to):

		Backend URLs (URIs to the API implementations)

		DNS entries for API Portal and Gateway

		Callback URLs for login federation (ADFS, Google and Github configuration)

Support for environments

To help with these things, the API Portal supports the notion of “Environments”, which are in effect only a packaging mechanism for a set of environment variables at runtime of the portal.

The idea is to get the following picture of the deployments (here, “API Portal” includes all the components, i.e. both the portal and the gateway):

[image: Deploying to multiple Portals]

An example will make it simpler to understand how it works. Start up the kickstarter with your own configuration, and perform the following step to introduce a new environment.

Parametrizing a backend URL

		Open the APIs page [http://localhost:3333/apis] and select an API you want to parametrize the backend URL for.

		Open the “Kong Configuration” of the API, locate the “Upstream URL” and tick the check box “Use environment variable”:

[image: Upstream URL]

		Save the configuration and head over to the Environments [http://localhost:3333/envs] page.

		On the /envs page, you will see a single environment default; click the default link [http://localhost:3333/envs/default].

		Among other settings, you will find the new environment variable here.

Now you have the choice to either just override this environment variable when deploying/running the portal (which will work just fine), or you can create environments which specify override variables. To do this, go back to the /envs page, and click the “Create new Environment” title bar.

		Specify a new environment name, such as dev, and click “Create”

		A page with the new environment and all environment variables is display; by default, all the variables are set to be inherited from the default environment

		Locate the new PORTAL_APIS_<YOURAPI>_UPSTREAM_URL variable, and click the “Override” check box.

		Enter a different value for the backend URL

In case you want to, you may now repeat for all your different environments.

What happens in the configuration

Inside your configuration repository, each creation of an environment has two effects:

		A new entry is added to the meta information file kickstarter.json; this file is used to keep track of the configuration files in the kickstarter (it is not used at API Portal runtime)

		A new file <your_new_env>.json is created in the static/env/ directory. This file contains all the overridden variables. The default.json which contains all environment variables is also stored in this directory.

Selecting an environment at runtime

In order to select which configuration environment should be used at runtime, the API Portal listens to the environment variable NODE_ENV; the NODE_ENV must match one of the defined environments from above.

How a deployment works is described in more detail on the following pages:

		Deploying Locally

		Deploying to Production

Using a localhost environment for local testing

To be written. Useful technique to separate settings which are only used for local development to settings used for actual deployments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/plugin-cors.png
CORS

Use the CORS plugin to enable Gross Origin Request Sharing on your API. If you don't use CORS, you will
not be able to call your AP from a browser. Which may be exactly what you do not want. For machine to
machine communication, enabling this is not required and definitely not recommended.

Access-Control-Allow-Origin:

Allowed origins; to allow allorigins, specify *
Access-Control-Allow-Methods

GETHEAD,PUT,PATCH,POST,DELETE

Value for the Access-Control-Allow-Hethods header, expects a comma delimited siring (e.g. GET,POST). Defaults to
‘GETHEAD,PUT,PATCH POST DELETE.

Access-Control-Allow-Headers

Value for the Access-Control-Allow-Headers header, expeots a comma delimited string (e.g. Origin, Authorization).
Defaults to the value of the Access-Cont rol-Request-Headers. header.

Access-Control-Expose-Headers

Value for the Access-Control-Expose-Headers header, expects a comma delimited string (e.g. Origin, Authorization). If
not specified, no custom headers are exposed.

71 Access-Control-Allow-Credentials: Flag to determine whether the Access-Control-Allow-Credentials
header should be sent with true as the value. Defaults to faise.

Preflight Max Age (seconds):

Indicates how long the results of the preflight request can be cached, in seconds.

) Proxy OPTIONS to backend: A boolean value that instructs the plugin to proxy the OPTIONS preflight
request to the upstream API. Defaults to false .

deployment-architecture.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Deployment Architecture

Introduction

The API Portal is currently purely intended to be deployed to a docker host or swarm, using docker-compose.

The deployment architecture is usually as follows:

[image: Deployment Architecture]

The next sections briefly describes the functionality of each deployment artifact. For a list of which docker images are begind the different boxes, please refer to the docker images documentation.

HAproxy

The HAPROXY component routes the incoming traffic via virtual hosts (vhosts) either to the Portal or directly to Kong. HAproxy is also able to load balance Kong if you decide to deploy multiple instances of Kong.

Portal

The PORTAL component consists of the actual web frontend of the API Portal. It is a stateless component (disregarding session information) which in turn relies completely on the PORTAL API to work correctly.

The PORTAL component is a node.js service listening on port 3000 over http, on the internal IP address portal.

Portal API

The PORTAL API is the heart of the API Portal. It is effectively the only component which has state (albeit placed in a data only container, DYNAMIC CONFIG). The PORTAL API is reachable within the docker network as portal-api with the http protocol on port 3001 and serves a REST interface on which all other components which are connected to PORTAL API rely on: PORTAL, KONG ADAPTER, MAILER and CHATBOT.

PORTAL API is implemented completely in node.js.

Static Config

The STATIC CONFIG is created at deployment time by building a static configuration container directly on the docker host which is to host the API Portal. This is usually done by keeping a special Dockerfile inside the deployment repository, which in turn clones the configuration repository into this container.

The data inside STATIC CONFIG is static and will not change over time once the API Portal has been started after a deployment. STATIC CONFIG is a “data only” container which does not actually run, but only exposes a data volume which is mounted by the PORTAL API container at runtime. When redeploying, this container always has to be destroyed and rebuilt.

Dynamic Config

The DYNAMIC CONFIG contains all dynamic (non-static) data which is needed for the API Portal, such as

		Users

		Applications

		API Subscriptions

		Email and Password verifications

These are stored as JSON files inside this “data only” container. At redeployment, this data container must not be destroyed and recreated. When exporting and importing data into an API Portal instance, this is the data which is transferred. This also applies to blue/green deployments.

Kong Adapter

The KONG ADAPTER is implemented as a node.js service which hooks into the webhook interface of the PORTAL API. It uses the address portal-kong-adapter and listens on port 3002. The Kong adapter listens to events from the PORTAL API and translates these into actions on the admininstration REST API of the Kong instance. The KONG ADAPTER fulfills the REST API specification for webhook listeners.

Mailer

The MAILER component is also a webhook listener implementation, but this component listens to specific events and sends out emails on certain (configurable) events, e.g. when a user has just registered and needs to verify his/her email address, or if a password was lost. It’s also implemented in node.js, it listens on address portal-mailer on port 3003, using the http protocol.

Chatbot

The CHATBOT component is very similar to the MAILER component, but does not send mails. Instead it may (configurably so) send out messages to webhook sinks in Slack or RocketChat (or other compatible chat tools). It has the default address portal-chatbot on port 3004.

Kong

If PORTAL API is the heart of the API Portal, Kong is the absolute heart of the API Gateway. The KONG component is based (very directly) on Mashape Kong, and routes all traffic according to the configuration in STATIC CONFIG and DYNAMIC CONFIG (via PORTAL API and KONG ADAPTER) to the backend APIs, or restricts access to the APIs. For storage of certain runtime data (such as rate limiting), it uses a database, here POSTGRES.

Postgres and Postgres Data Volume

To store runtime data, KONG needs a database backend, which by default is a Postgres instance. Usually there is no need to backup the data volume used by POSTGRES, as the API Portal system is designed to be immutable, with the single exception of the DYNAMIC DATA container volume. Most data (except rate limiting data and OAuth tokens, if you use those) can be reconstructed from scratch after a new deployment, as soon as the DYNAMIC DATA has been restored or picked up (depending on your deployment strategy).

Deployment Variants

The above deployment architecture will most probably work for most scenarios, but there may be a need for other types of deployments in the future. This is not impossible at all, but rather expected. The API Portal is designed upfront to be able to deployed using other architectures.

In the future, the following deployment variants may also be interesting:

		Separate Kong/Postgres/Cassandra deployment
		Better support of zero-downtime upgrades for the API Gateway

		More robust HA deployments

		Docker Swarm Deployment (docker 1.12+)

		Deployments leveraging AWS ELB or Azure LB natively

 © Copyright 2016.
 Created using Sphinx 1.3.5.

defining-user-groups.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Defining User Groups

Introduction

User groups can be used to restrict access to APIs, API Plans and Content. Depending on how restrictions are to be used in the API Portal, you will need one or more additional user groups.

User groups are intended to be used to restrict access to certain domains, such as “User Management APIs”, or “Product APIs”. This is not mandatory though, and user groups can possibly be used for other things as well.

APIs, API Plans and Content can always only be assigned to a single user group (or none). The n:1 relationship is only present on the User object, which can be part of multiple groups, and thus get access to multiple domains.

See also:

		Defining an API

		Setting up Plans

		Adding Custom Content

Assigning User Groups

User Groups can be assigned via one of the following mechanisms:

		Automatically when a user validates his email address (or is logged in using federation), see below

		Via ADFS Group federation

		Manually by an API Portal Admin (who is a member of an admin group)

Prerequisites

		You have created a portal configuration repository

		The kickstarter is running, pointing to your configuration repository

You can now review the user groups using the Groups Configuration [http://localhost:3333/groups].

Predefined User Groups

For fresh configurations, there are two predefined user groups, of which the API Portal only assumes that the admin group will always be available.

User group dev

The user group dev is a group which is by default used as the default group for portal users which have a validated email address. This is usually a good idea to have such a group to rule out developers for which you aren’t sure you can reach them via email.

Regarding other things, the API Portal does not rely in any way on this specific user group being present. You can remove it, rename it or leave it as it is.

The default user group for users with validated email addresses can be specified using the kickstarter [http://localhost:3333/groups].

User group admin

All configurations should contain an admin user group. This is the default Admin group. Nothing prevents you from having additional groups with the “Administrator Group” set; please note though that there is no such thing as “more admin than others”. Either you are a member of a group with the Admin flag set, or you are not. WHICH group this is does not matter.

As described in the setup documentation, by default there is exactly one Administrator predefined, the Admin user with the user id 1 (email admin@foo.com, password wicked); leverage this user to grant admin rights to your own user (if you are the admin) and subsequently remove the password from the default admin user to prevent people logging in with that super user.

User group use cases

The followings sections describe typical use cases for user groups.

Restricting access to APIs for users without valid email address

Some use cases may require that not all APIs are visible to the public. By defining the default user group for validated users to the requiredGroup property of an API, you will get the following effect:

		The public will not be able to see the API

		Logged in users which have not yet validated their email address will not see the API

		As soon as the user has validated the email address, he will see the API

Restricting access to API Plans

In some cases it may be helpful to restrict the access to certain API Plans to a user group.

Example: By default (e.g. the dev group), the only plan available have a strict rate limiting in place to be sure nobody will overload the API backend. Some other users, e.g. the ones conducting load testing, may be assigned to a new user group load_test (or similar), for which there exists another API Plan (e.g. unlimited) which does not have the same restrictions.

Example: Perhaps you have a set of developers whom you trust more than others, and you do not need to approve of them getting API access. You could then create a new user group trusted_dev and create additional plans for this user group, which do not require approval from an Admin.

Automatic federation of ADFS groups to API Portal groups

The ADFS Authentication enables federating ADFS groups to API Portal groups (see documentation).

This enables a centralized configuration of user groups even before they have logged in to the API Portal the first time. When defining user groups, you can specify (comma separated) the ADFS group this group corresponds to.

Even if you have multiple API Portals, you can make certain users (belonging to a specific ADFS group) member of specific user groups without further manual intervention.

Note: This also works with the admin group, so that you can automatically assign users Admin rights when they log in the first time.

Restricting access to custom content

Just like for APIs and Plans, you can use the requiredGroup property of a content companion JSON file to restrict the access to the page to users which are members of a certain group.

This can be useful to restrict content for certain domains to certain groups of users.

See also:

		Adding Custom content

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

docker-images.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Docker images

The API Portal is built from the ground designed to run in docker. While it is perfectly possible to run the different servces necessary to run the API Portal by themselves, all tooling and all documentation will be written with docker as the run time environment in mind.

Docker has various major advantages:

		The environment under which the API Portal runs is well known, as it is using a pre-built image

		Installation/deployment of the API Portal is very straightforward and it will work on any platform supporting docker (Ubuntu, RHEL, CentOS,...)

		Local deployments on developer machines are simple using the Docker Toolbox, and you can test a deployment on your local machine almost like as if it were in production

Docker image build process

The images needed for the API Portal are built automatically by our CI/CD servers and are subsequently pushed to docker hub [https://hub.docker.com] if all tests pass successfully.

The following images are taken as defaults for API Portal deployments, among which the following are built by us:

		haufelexware/wicked.mashape.kong:latest: Our Mashape Kong built, unchanged from the original

		haufelexware/wicked.kong:latest: The Portal’s Kong image (slightly extended)

		haufelexware/wicked.portal:latest: The Portal UI image

		haufelexware/wicked.portal-api:latest: The Portal’s API image

		haufelexware/wicked.portal-kong-adapter:latest: The Kong Adapter

		haufelexware/wicked.portal-mailer:latest: The API Portal’s Mailer component

		haufelexware/wicked.portal-chatbot:latest: The API Portal’s “Chatbot” component

All node.js based images are based on the official node:4 [https://hub.docker.com/_/node/] image (all images starting with wicked.portal).

The following images are not built by us, but are taken as-is:

		postgres:9.4: The official Postgres 9.4 [https://hub.docker.com/_/postgres/] image

		dockercloud/haproxy:1.2.1: Docker’s official HAproxy [https://hub.docker.com/r/dockercloud/haproxy/] release.

Available Tags

The API Portal uses Semantic Versioning, and as such it should be safe to stay on a specific build version of the API Portal. All actual releases have their own release tags (such as 1.0.0), but these are not mentioned here. Only meta tags and semantic release tags are described.

		latest: Latest stable release; use this when setting up your deployments and/or for testing and development portals. Maps to certain releases of the master branch.

		1.y: Alias for the latest 1.y.z release, containing all bug fixes and patches for the 1.y version. Use such a tag if you want to be restrictive in what features you want to ship with your API Portal. Maps to a release branch names as the release. Example: 1.2 maps to all versions 1.2.z, e.g. 1.2.5 or 1.2.7.

		1: Alias for the latest Release of v1 portal; note that this may contain new features (minor version upgrades). For most purposes this tag will be okay to use.

		dev: The nightly build of the API Portal; this contains all current changes and may not be stable at all times. Maps directly to the master branch.

More tags will subsequentely be described here.

Upgrading docker images

Please confer with the Release Notes for upgrade instructions from one release to the next. As a main rule, according to the semantic versioning, upgrades within one major version should work without problems.

Note: Downgrading installations will in most cases not work without restoring dynamic configuration data using some disaster recovery mechanisms (redeploying using dynamic data of the same version as you are deploying). This should be common sense though.

Building your own images

If you need to build your own docker images for use within your own organization (we do this internally as well), feel free to use (and/or adapt) the docker-build.sh script in this repository.

The script takes parameters in the form of the following environment variables:

		DOCKER_PREFIX: The prefix for your docker image; when building the official ones, this is set to haufelexware/wicked., and the various package names are appended. In case you want to push to a local registry, this may be set to something similar to registry.company.io/wicked/, which would render image names like registry.company.io/wicked/portal-api.

		DOCKER_TAG: The tag which is to be build; this variable is mandatory, use e.g. dev or a similar value.

		DOCKER_REGISTRY: (optional) Use this setting to specify a private registry, or use hub.docker.com or docker.io (or leave empty) to use the official Docker hub. If this is not specified, the official Docker hub is assumed.

		DOCKER_REGISTRY_USER: (optional) Specify the registry user name here if you want to push your images after building them. If this variable is empty, the built images will not be automatically pushed.

		DOCKER_REGISTRY_PASSWORD: (optional) If you have specified a user name for the registry, also specify a password in this variable.

		WICKED_KONG_IMAGE: (optional) Specify which Kong image should be used with the API Portal; for the official builds, this is set to haufelexware/wicked.mashape.kong:latest; if you levae this out, it will default to Mashape’s own build at mashape/kong:latest.

		DOCKER_RELEASE_TAG: The docker-build.sh script can also be used to tag a specific image with release tags. The DOCKER_RELEASE_TAG has to be in x.y.z format. This will only have an impact if images are pushed to a registry, otherwise it won’t. It will automatically tag x, x.y, x.y.z and latest for the built images.

This script is used both for building internal images at Haufe-Lexware as well as the official images directly from Github.

Future Changes - A note on Docker guidelines

Currently, the docker-build.sh is a rather bad workaround which actually breaks some of our docker rules we have at Haufe-Lexware, such as:

		One repository, one Dockerfile

		One build pipeline per Dockerfile

This will change sometime in the future, so that not all changes to the repository (such as documentation) would trigger new builds of components, and so that components can be built without the need to build all components at once.

This will mean

		Splitting up the repository into the different components

		Storing the portal-env and node_modules as artifacts when building (interesting but not very simple)

		Greater flexibility and faster build times

It will also need to have an impact on how testing is done.

See also:

		Haufe Docker Styleguide [https://github.com/Haufe-Lexware/docker-style-guide]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

development-environment.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Setting up a local development environment for wicked

Options to run, which services need to run, which do not need to run.

TODOs

		[] Create a first draft of the page

 © Copyright 2016.
 Created using Sphinx 1.3.5.

contributing.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Contributing to wicked

Feel free to contribute. Please follow the guidelines on this page, then file a pull request. If the PR does not run through the checks and tests, it will not be considered for merging.

Although not enforced, please write a unit test or service test for your PR.

Licensing

Apache 2.0 License.

Service and Integration Tests

Service Tests

Service tests for API Portal.

Integration Tests

Integration Tests for Portal (using a running API).

Code Coverage (with istanbul)

Is done for portal and portal-api so far.

Unit Tests

Unit tests for kickstarter (only some so far).

TODO: Write unit tests for tricky bits of portal-kong-adapter (the matching parts).

JSHint

All files are using 'using strict'; and are regularly (at container build) run past JSHint. Any errors in JSHint will cause the build to fail.

TODOs

		[] Create a first draft of the page

 © Copyright 2016.
 Created using Sphinx 1.3.5.

using-the-sample-portal.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Using the Sample Portal

Prerequisites

None.

Demo/Sample Portal

There is a sample portal using the latest version of wicked at

wicked-demo.haufe.io [https://wicked-demo.haufe.io]

The sample portal only contains two APIs, of which one is not visible publicly, but only after you have signed up for the API Portal, and have verified your email address.

Signing up to the portal

Go to wicked-demo.haufe.io/signup [https://wicked-demo.haufe.io/signup]. There you will have the choice to either sign up to the API Portal using an email address and password, or you can use any of the social logins offered there (currently the portal supports Github and Google authentication).

If you choose to sign up using email and password, you will receive an email from the portal where you have to click a link to verify your email address. If you do not do this, you will not be able to actually use the API Portal. This is a configuration setting you can change if you want to (for your own portal), but in the sample portal, this is required.

In case you use the social logins (Github or Google), the sample portal will ask you to grant access to your email address; in these cases, you will not need to verify your email address, as the portal assumes the ones associated with Google or Github are correct.

Browsing the APIs

After logging in to the portal, you can browse the APIs which are published via this API Portal at the following URL:

		wicked-demo.haufe.io/apis [https://wicked-demo.haufe.io/apis]

We have chosen to publish the “classic” Petstore API which is used for demo purposes for Swagger. It’s available not only once, but twice for the following reason: The API Portal is able to secure an API backend using (currently) two different approaches: Either using API Keys (which have to passed in a custom header, usually X-ApiKey), or using the OAuth 2.0 Client Credentials Flow.

The first Petstore API is secured via API Keys, which is indicated by the following icon:

[image: API Key Icon]

The second API is called Petstore OAuth, and is secured via OAuth, which is indicated by the following icon:

[image: OAuth Icon]

In order to subscribe to one of those APIs, you will first need to tell the Portal which Application (or, “Client”) will use the API. This is done by registering an application.

Registering an Application

Browse to the following location (or use the main menu on the website):

		wicked-demo.haufe.io/applications [https://wicked-demo.haufe.io/applications]

Create an application, which corresponds to the client which will use the API in the end, by supplying an application ID and an application name. The application ID can only contain characters a-z, hyphens and numbers (0-9), whereas the friendly name should contain just that, a friendly name for the application which makes it easier to identify it.

Note: The application ID must be unique for the API Portal; for the sample portal it may very well be that test-app is already taken ;-).

Subscribing to an API

Now go back to the APIs [https://wicked-demo.haufe.io/apis] page and select the “Petstore” API. Now you see your application in a list on the API page, and a big green button which says “Subscribe”. Click it, and you will be presented a set of different plans you subscribe to the API with: “Basic Plan”, “Stupid Plan” and “Unlimited Plan”. The first two plans do not require approval by an admin, so select one of those plans, perhaps even the “Stupid Plan”, so that you can see what kind of functionality is behind the API Gateway (which is Kong [https://getkong.org]).

After clicking “Subscribe!”, the portal takes you back to the Petstore API page [https://wicked-demo.haufe.io/apis/petstore], where your application is now displayed together with the API key which was generated automatically by the Portal. When you use the API from your application, this is your API credential you have to pass in when calling the API. If you do not, the API call will be rejected due to lack of credentials.

Now click the “Try it!” button to the right of the application line.

Trying out the API with Swagger UI

The API portal supports Swagger/OpenAPI documentation of APIs, and incorporates Swagger UI directly in the portal. Swagger UI can be used in two modes: Either in documentation only mode (when clicking on the “Description” and “View Swagger Definition”), or in an interactive mode (“Try it!”). If you followed the steps from above, you will now be presented Swagger UI in interactive mode, which means that you can actually call the backend API (here: the Petstore API) directly from the website, using AJAX calls.

To quickly try this out, open the store section of the documentation, and look for the operation GET /store/inventory. Click it and you will see that the operation has an additional parameters X-ApiKey which is usually not part of the Petstore Swagger file. This parameter (header) is automatically added by the API portal to make clearer how to use the API over the API Gateway. You will also see that the header has been prefilled with your API key which was generated in the above subscription test.

Now click “Try it out”, and the request will go through to the API, via the API Gateway.

Tweaking and Testing

Now change the last character in your X-ApiKey header and retry the request. What will happen is that the API Gateway (remember, Kong), rejects the request with a 403 response (Unauthorized), due to the fact that the API key is wrong.

Take back the change and re-enter your actual API key. Now press “Try it out” again, once or twice quite fast after each other. Depending on the time you took between the last request and the following request, Kong will reject your request with a 429 response code, as your quota of API calls is full (remember: We selected the “Stupid Plan”, with a rate limit of 1 call per minute).

TODOs

		[] Create a step-by-step guide to subscribing to an API

		[] Set up continuous deployment of wicked for the demo

		[] Describe restrictions and implications of the demo portal

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

auth-github.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Configuring Github Login

Introduction

The API Portal can use Github for federating user logins to the API Portal. Users which are logged in using Github Social Login will automatically be registered for full use of the API Portal:

		The primary email address which is used with Github is taken as a verified email address in the API Portal automatically (the user is auto-verified)

		Name and email address are automatically retrieved from Github

		The ID from Github is used as a unique id (prepended with GitHub:) in the API Portal

This is probably a good fit for most public facing developer API Portals, as most developers tend to already have a GitHub account.

Step 0: Prerequisites

You need the following things:

		A running kickstarter, pointing to your configuration repository

		The fully qualified domain name (FQDN) of your API Portal(s)

		A valid GitHub account and access to the Account or Organization you want to create a login for

Step 1: Register your API Portal(s)

Perform the following steps on GitHub [https://github.com] to register your API Portal as a developer GitHub application:

		Open the Settings Tab, and open the OAuth applications/Developer Applications [https://github.com/settings/developers] panel

		Click the “Register a new application” button

		Specify all needed fields:
		Application Name: State a speaking name for your API Portal, e.g. “MyCompany API Portal DEV”

		Homepage URL: This should point to the main page of your API Portal, e.g. https://domain.mycompany.com

		Application Description: Write more information on the API Portal here; this will be displayed when Github users log in to the API Portal

		Authorization callback URL: This is the most important bit, and has to point to the callback URL of your API Portal. If your main portal is at https://domain.mycompany.com, this will be https://domain.mycompany.com/callback/github

[image: Github Register application]

		Click “Register application”

		You will be presented the Client ID and Client Secret which are needed to configure your API Portal:

[image: Client ID and Secret]

Notes:

		You will need separate GitHub applications for separate instances, e.g. for Dev, Test and Prod; each have a different set of credentials

		By registering a localhost callback URL, you can register a separate local testing application; this works just fine if you are in a developer setup
		You could also register a DNS name you have specified in your /etc/hosts (or on Windows, HOSTS file) with GitHub. As OAuth 2.0 is a purely client side redirect flow, this will also work just fine, as long as your local browser is able to resolve the DNS name.

		Combine this with a localhost or development environment for most flexibility.

Step 2: Configure the API Portal

Next, you need to configure the API Portal to know the GitHub credentials. To do that, open up the kickstarter on the Authorization Page [http://localhost:3333/auth], and tick the “Use GitHub Authentication” check box:

[image: Kickstarter - Github]

Make sure you are using the “Use environment variable” checkbox to enable:

		Having multiple Client IDs and Secrets for multiple environments

		Encrypting the Client ID (tick the “Encrypt” checkbox for this value) in the configuration repository

To learn more about deployment enviroments, see the documentation on that.

Now all you have to do is to check in your changes to source control and redeploy your API Portal(s). GitHub social login should now be working.

FAQ

		Nothing so far.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

auth-adfs.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Configuring ADFS 3.0 Login

(...)

		Add OAuth 2.0 Client using Add-AdfsClient: https://technet.microsoft.com/de-de/library/dn479319(v=wps.630).aspx

		Configure claims (how is this done?) and relying parties (needed somehow)

TODO for Dutzu, if possible.

ADFS Group Federation

See also:

		Defining User Groups

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_images/key-icon-64.png

release-notes.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Release Notes

Release Notes for API Portal releases in bottom-up order (latest first).

The Release Notes state changes from release to release, possibly also giving upgrade instructions.

1.0.0

Initial Release of the API Portal.

Docker Tag: tba

0.9.0 (beta)

Date: August 3rd 2016 (2016-08-03)

Docker Tag 0.9.0

 © Copyright 2016.
 Created using Sphinx 1.3.5.

faq.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

FAQ/Docs

Q: what is this start.sh about?

A: The script bundle a couple of things together that usually would be provided/handled by some
CI/CD process.

Most important are:

		start.sh --build: build reuqired containers in the correct sequence

		start.sh --start: starts the container set

		start.sh --scale <num>: sets the number of running kong instances

If you want to execute the commands on a remote machine, simply use this instead of the simple start.sh:

start.sh --env <docker-machine storage path> <docker-machine name> ...

		https://github.com/docker/dockercloud-haproxy

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

adding-custom-content.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Adding Custom Content

Introduction

The API portal can, in addition to the actual APIs, serve additional content, such as markdown pages or html content (as jade files). This documentation describes how that works, both using the kickstarter and manually.

Prerequisites

The document assumes you have a working API Portal environment and a configuration repository you can work with.

See:

		Creating a portal configuration

		Deploying locally

Types of custom content

The API Portal supports the following types of custom content, which it will serve with correct media types (in case of binary content):

Textual Content, served as embedded content in the actual API Portal (as a web page):

		Markdown content

		Jade content

Binary Content, always served as a public asset:

		JPG/JPEG images

		PNG images

		GIF images

		CSS files

Note: Currently, there is no explicit support for other file types, not even PDF. If there’s demand for this, we can think something up, or use some library to do the media type selection.

Design time

All custom content is part of the configuration repository, and inside that repository, the files are stored inside the content directory. If it’s a binary file (of one of the types above), you only need to drop the file inside the desired sub directory of content, e.g. content/images, and the API Portal will be able to serve the file directly.

For Markdown content (.md files) and Jade content (.jade files), each content file needs to be accompanied by a .json file which contains some metadata on the content. These companion files look as follows:

{
 "showtitle": <boolean>,
 "omitContainer": <boolean>,
 "title": "<The page title>",
 "subTitle": "<The page subtitle>",
 "requiredGroup": "<required user group, or omit for public>"
}

		showTitle: This is a boolean value (either true or false) which determines whether the content is rendered using the standard Bootstrap “Jumbotron” header as the standard pages, or if you want to leave it out.

		omitContainer: When creating standard pages with little or no custom HTML code, you usually want to have the content inside a Bootstrap <div class="container"> so that it has the rights margins and paddings. This parameter lets you omit that container, e.g. if you want to provide your own container with custom classes or similar.

		title: This is the title of the page; it’s both used (in case showTitle is set to true) as the page title in the Jumbotron, and in the <title> tag of the HTML header.

		subTitle: The subtitle is only used if showTitle is true; in that case this is the sub title inside the Jumbotron.

		requiredGroup: In case you want to restrict the content to logged in users belonging to a specific user group, you can do that here. Leave out the property if you want your custom content to be publicly visible, even for non-logged-in users.

[image: Example Content]

In case an .md or .jade does not have a companion file, the content will not be served (you will get a 404 back).

Creating Custom Content

When creating custom content, the kickstarter can be of great help in maintaining the companion JSON files. It is definitely a good idea to create stubs using the kickstarter, and then continue editing the files with more able editors, such as Atom or VSCode (for Jade files), or any Markdown editor such as Mou or MarkdownPad 2 for markdown content.

To create a new Markdown file, perform the following steps:

		Start the kickstarter, pointing to your configuration repository.

		Navigate to the Content [http://localhost:3333/content] index page

		Towards the bottom of the page, you will find the “New Content” panel:

[image: New Content Panel]

		Specify whether you want a new Markdown (.md) or Jade (.jade) file

		Specify the path at which you want the content to be served, e.g. my-example will be served at /content/my-example

		Click “Create new file”

You will then be presented with the preview of the newly created page inside the kickstarter; on this page you can also specify all the options in the companion .json file using a web UI.

[image: Companion JSON file editor]

Markdown Files

When using Markdown content, the mostly standard Github Flavored Markdown is used, to the extent that the node.js library marked is supporting it.

Syntax highlighting for code snippets (using one or three backticks) is also supported, courtesy of highlight.js.

Markdown is especially useful for documents which have a suitable structure, and which do not need “fancy” things such as elaborate tables or other HTML elements which do not map one to one with markdown.

If you need more control over how the content is rendered, you will have to resort to using Jade content.

Jade Files

As a second major content type, Jade files are supported. Jade is a templating language for HTML, you can read up on the syntax at jade-lang.com [http://jade-lang.com].

When using Jade, you have full control over the HTML which is output, and you may also use the entire Bootstrap library which is part of the API Portal distribution, and is always part of every web page served by the API Portal. Bootstrap 3 is currently used, and the documentation is at getbootstrap.com [http://getbootstrap.com].

Using the View Model in Jade

A second advantage of using Jade is that you can make use of the current state of the user’s session, by referring to the variables which are passed in to the Jade page at render time.

The view model is built up as follows for all custom content pages:

[image: Content Viewmodel]

		authUser: The property authUser contains information on the logged in user; you can expect firstName, lastName and email to be filled. If there isn’t any logged in user, authUser will not be present. This can be used to display slightly different things when a user is logged in, using a if authUser Jade statement.

		title, subTitle, omitContainer, showTitle, requiredGroup: These are the settings from the abovementioned JSON companion file; these will be copied from the companion file into the view model of the page

		glob: This is the globals.json file of the configuration repository. Pay close attention that this variable may contain clear text credentials, so don’t blindly output information from this variable. In some cases it may be useful to know the API host or Portal host, which are stored in the glob.network object.

For an example of how a Jade page is leveraging the view model, see the predefined index.jade page.

Predefined Content files

Predefined markdown and Jade files

In a fresh configuration repository, there are already a couple of predefined files inside, which are described in detail further below:

		The main index: index.jade

		The contact page: contact.jade

		An example markdown page: example.md

		An example restricted markdown page: restricted.md

		The main stylesheet wicked.css

Additionally, the following two pages are pre-packaged:

		An example privacy policy you may use as a starting point for your own privacy policy: `privacy-policy.jade``

		A documentation describing “Terms and Conditions”: terms-and-conditions.jade.

Of these files, only example.md and restricted.md may be removed entirely, all other pages, including the privacy policy and terms and conditions are being linked to by standard pages of the API Portal, and thus are required to be present as they are, having the exact names.

Predefined images

With an initial configuration also come some images:

		animal.jpg is used on the example.md page and can be safely removed if you do not need a stag someplace (ahem)

		arrow-left.png and arrow-right.png are used on the initial index.jade page; if you rewrite the main page, you can safely remove these files from your configuration repository

The next two images are not optional, and need to be present:

		wicked-40.png: This is the logo which is displayed in the top left corner of every web page the API Portal serves. If you replace this image with something else, make sure it has the same dimensions as this image.

[image: Top left logo]

		wicked-auth-page-120.png: This file is used as a logo image on the login and signup pages. You may replace this logo, but it should have the same dimensions as this file to make sure the web pages still look good.

[image: Authentication logo]

Run time

At run time of the portal, the content files are all served at /content/..., with the single exception of the index page (/), which is both served from / and /content.

Depending on the companion JSON file, you may need to log in to view the content pages (and have the correct user group assigned to you). All binary content (images) are currently served without checking whether a user is logged in or not.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

setting-up-plans.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Setting up API Plans

Plugin Configuration

Configuring Kong Plugins.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

creating-a-portal-configuration.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Creating and Changing a Portal Configuration

Introduction to “kickstarter”

In order to deploy your own API Portal with your own APIs, you will need a configuration repository. Configurations can either be edited directly using a text editor (and in some cases you will have to do that), or - which is preferred - using the “kickstarter”.

The kickstarter is a web application which you run locally on your computer; it operates on a repository of configuration files, and is not intended to run publicly and/or constantly. It is just for editing the configuration.

What’s in the configuration?

The following things (and some more) are part of the configuration of the API Portal:

		API Definitions
		API Gateway configuration for each API

		Backend end points for the APIs

		Plan definitions

		User Group definitions

		Initial Users definitions

		Authentication Settings
		ADFS Configuration

		Google Login Configuration

		Github Configuration

		Local signup configuration

		Custom Content, such as Tutorials,...

		...

Most of these things are not only configurable inside the configuration, but also parametrizable using so-called “environments”. To read up more on environments, see Using Deployment Environments.

How the configuration repository works

In order to make it clearer how the configuration of the API Portal, consider the following illustration which is a part of the deployment architecture of the API Portal:

[image: Build process]

This image illustrates that the Portal API component is actually made up of three different containers: The portal-api container, and two additional configuration/state containers (data only containers), of which one is the static configuration container, and the other contains the dynamic data (users/passwords, application definitions, API subscriptions) which are used at runtime.

The deployment process assumes the static configuration resides inside a git configuration repository, and the only thing it neds to build are the credentials and URLs of this git repository.

Ther configuration repository itself is what is used with the kickstarter. The kickstarter can edit those static configuration files.

Creating a new configuration repository

The following steps assume you have not set up a development environment for API Portal development (the API Portal components themselves), but rather are using the pre-packaged docker images Haufe-Lexware have created from the sources.

Step 1: Pulling the kickstarter docker image

Pull the latest docker image for the kickstarter by issuing the following command:

$ docker pull haufelexware/wicked.portal-kickstarter

Step 2: Create an empty repository directory

On your local machine, create an empty directory named static at the location you want to store the repository configuration locally.

Note: We will mount this directory into the docker image for kickstarter, so this has to be technically possible. Depending on the docker type you are using, you will want to stick to a subdirectory of your user folder (C:\Documents\<your user> on Windows, /Users/<your user> on Mac OS X). This path will be referred to as /path/to/static in the following sections.

Step 3: Running the kickstarter

We are now ready to start the kickstarter:

$ docker run -it --rm -v /path/to/static:/var/portal-api/static -p 3333:3333 haufelexware/wicked.portal-kickstarter --new

The above docker command does the following things:

		Starts the kickstarter image interactively (-it) and will remove it after it has finished (--rm)

		Mounts /path/to/static (your new repository configuration directory) to /var/portal-api/static, which is the directory where the kickstarter expects the configuration to be by default

		Opens the port 3333 from the container to the docker hosts port 3333

		Tells kickstarter to create a new configuration (--new)

Depending on your docker setup, you may now browse to http://localhost:3333 and view the kickstarters configuration pages.

Step 4: Inspecting the repository

Inside the /path/to/static directory, kickstarter has now put quite a large amount of files which can be used for deploying an API Portal to your premises.

The mostpart of these files can be directly committed to a git repository, but there is a special file which was created which needs special attention: deploy.envkey. This file contains a random string which is used to encrypt secrets inside the configuration files. This file MUST NEVER BE CHECKED IN TO VERSION CONTROL. This is the key which you need on your deployment system (CI/CD system) in order to “unlock” the encrypted secrets inside your configuration.

By default, a .gitignore file is created which explicitly takes out the deploy.envkey from source control. Nonetheless, when you edit a configuration using the kickstarter, you will need this file to be in place. If it is now, a new one will be created, but previously created secret environment variables can not be successfullly decrypted. For a more thorough discussion on secret environment variables, see Using Deployment Environments and Handling Credentials.

Step 5: Stopping the kickstarter

Usually you may stop a container by pressing Ctrl-C, but this doesn’t work when using the above combination of command line options. Instead, you should use the “shutdown” button in the menu bar of the kickstarter web page. This will shut down the running container, and, as we used the --rm command line options, clean up the container.

Step 6: Checking in configuration to a git repository

Now you are ready to check in the configuration to a git repository. Please review your configuration settings, so that no credentials are checked in as clear text into the git repository. In case you need to keep credentials in the configuration, such as client ids and secrets for Google or Github social logins, please confer to the documentation on handling credentials.

Note down the git repository and credentials needed to clone the repository; these are needed when deploying.

Conclusion

We have now created a new initial configuration for an API Portal; all the files are stored locally in /path/to/static, and should now be stored inside a git repository.

Next steps

		Deploying the API Portal locally

		Deploying to production

		Specifying deployment environments

[bookmark: editing]

[bookmark: editing]

[bookmark: editing]

Editing a configuration repository

Prerequisites

In order to change an existing configuration, you will need the following things:

		The git repository and corresponding credentials,

		The encryption key which was used when the repository was created

The encryption is normally called deploy.envkey and is automatically created when a repository is created. As this key MUST NEVER be checked in to git, you will have to keep track of it with some other kind of mechanism (which is not covered here). It is to be treated as a password for the entire repository.

In case you have stored the encryption key somewhere else, you will need to create a new file called deploy.envkey containing the encryption key; please take care that the file does not contain any kinds of line breaks (#10 or #13).

Then clone the repository, the path to the static will be referred to as /path/to/static. The deploy.envkey file has to reside inside the static directory (besides the globals.json file).

Step 1: Pull the kickstarter docker image

In case you haven’t done that already, pull the latest docker image for the kickstarter by issuing the following command:

$ docker pull haufelexware/wicked.portal-kickstarter

Note: It’s important that you are using the same version of the kickstarter as the API Portal you will be deploying. The different components are released together and rely on each other using the same data formats. In case you are using a named release (tagged) of the API Portal for deployment, you MUST use the same version for the kickstarter. Otherwise, the static configuration will potentially have a higher version number than the API Portal can actually handle. This may result in unpredictable behavior of the Portal, and/or the portal will not be able to start correctly.

Step 2: Start the kickstarter

With the /path/to/static at your cloned repository, issue the following command:

$ docker run -it --rm -v /path/to/static:/var/portal-api/static -p 3333:3333 haufelexware/wicked.portal-kickstarter

It is essentially the same command line as when creating a new configuration, just omitting --new. The kickstarter in docker will assume that the static configuration resides in /var/portal-api/static, which will be the case if you mount your /path/to/static to that path inside the container with the above -v command line switch.

Step 3: Edit the configuration

The kickstarter will now run and you can access the configuration web site at http://localhost:3333.

Most options in the kickstater UI are self-explanatory, and/or are documented inside the web site itself.

Some things you may want to do which are explained in more detail here:

		Defining an API

		Setting up API Plans

		Defining user groups

		Adding custom content

Step 4: Stop the kickstarter

As soon as you are done editing the configuration, shut down the kickstarter using the “shutdown” icon top right of each configuration page.

Due to mounting in your local directory into the container, the configuration will now have changed on your local disk.

Step 5: Check in your configuration changes

When you are done with editing the configuration and have stopped the kickstarter, you can continue with checking in the configuration to your git repository. Review the changes with the following things especially in mind:

		Are there any new credentials/secrets which are visible in plain text? (see handling credentials

		Are there settings which have to change between different deployment environments, and thus need to be parametrized using environment variables?

Step 6: Redeploy

Now you are ready to redeploy the configuration. Depending on your setup, this will be done automatically (in case you set up continuous deployment), or you have to deploy manually.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

handling-credentials.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Handling Credentials

The Problem

In some cases it will be necessary to handle sensitive information inside the configuration repository, e.g. to store the credentials for reCAPTCHA or client ids and secrets for enabling social logins like Google and Github. Other sensitive information might be things like a Authentication: Basic ... header which is needed for accessing a backend URL.

Obviously, it is not desired (or advisable) to store these settings inside the git repository with the other configuration. You should not do this even if you are using a private git repository.

On the other hand, having all credentials which you need to deploy and run an API portal in a single place, is very convenient.

The Solution

There are various different solutions to this problem, and most of them involve environment variables which can be inserted at runtime, so that only the reference to an environment variable is stored in the actual configuration repository; e.g. $SECRET_PASSWORD.

This is supported by the API Portal, but as an addition to that, by using encrypted variables, the content of these environment variables can be stored in the git repository together with the rest. What MUST NOT be stored in the configuration repository is the key to the secrets.

Handling using the kickstarter

For those cases where you need a credential/a secret in the configuration, the kickstarter usually always provides a check box underneath the setting which allows you to use an environment variable instead of passing in the text “as is”. This environment variable can in turn be encrypted using the “Environments” settings page.

For more information, see Using Deployment Environments.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

monitoring.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Monitoring the API Portal

An deployment such as an API Portal should always be monitored in some way, both regarding the underlying APIs, and the API Portal itself. Let us look at the two categories of monitoring which are of immediate importance.

API Monitoring for the backend APIs

To make sure the API Gateway works like it should, it is recommended to have certain “ping” endpoints on your backend APIs which can be used from a monitoring application to check whether access is possible via the API gateway to the backend API.

These endpoints do usually not need to be very elaborate (return OK or similar); they should just enable your monitoring application to rule out the API Gateway if something is not reachable from the outside.

API Portal Monitoring

Likewise, the API Portal itself also should be monitored. The API Portal provides a “Health API” to make this task easier.

[image: Health API]

Setting up monitoring

Setting up monitoring is fairly straightforward, using the mechanisms of the API Portal itself. You only need to log in to the API Portal as an user which is part of the admin group; this will give you access to the “Health API”, which is a built-in API of the API Portal. Perform the following steps (logged in as an Admin user):

		Register an application which corresponds to your monitoring application, such as “Nagios” or similar

		Subscribe to the “Health API” (API ID portal-health) for this application

		Optionally also subscribe to all other APIs which are to be monitored by this application

		Use the API Keys or Client Credentials to set up monitoring

The description of the Health API also contains more information on this topic.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_images/blue-green-1.png
wwm-w‘

BLUE

10123

APIS

_images/plugin-other.png
Other Plugins.

‘This wicked Kickstarter application only has direct support for a few of Kong's plugins. You can, by editing
the following JSON snippet, configure all other plugins according to the plugin documentation at Mashape.
Kickstarter will unfortunately not really help you with it. The input area will expect a JSON array of plugin
configuration, as described at Kong's documentation pages.

Important Note: You must not try to use any of the following plugins, as they are used under the hood by
wicked to achieve the subscription mechanisms:

« Access Control Lists (ACL)
« Key Authentication (key-auth)
+ OAuth2 (oauth2)

Toolbox

Add Forwarded header

Add Forwarded Header

Add Basic Authentication Header
Username: Password:

‘Add Authentication Header

config”
“uri_param_names": "jwt",
“claims_to_verify "

defining-an-api.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Defining an API

Prerequisites

		You have created a portal configuration repository

		You know which backend URL you want to pass through the API Gateway (upstream service URL)

		The kickstarter is running, pointing to your configuration repository

API Definition

Defining an API consists of providing information on the following things:

		API name and descriptions

		Authentication method (key-auth or oauth2 currently)

		Required user group

		API backend URL

		Subscription plans attached to the API

		The API Swagger file

		The API Gateway (Kong) configuration
		The request path (under which URL shall the API be reached)

		Backend URL (the actual service URL)

		Gateway configuration (rate limiting, CORS,...)

Step 1: Creating a new API

In the kickstarter, navigate to the APIs Page [http://localhost:3333/apis]. In the green panel at the bottom of the page, specify the ID of the API to create. This has to be a combination of lower case letters, numbers and hyphens. The kickstarter will not allow the creation of other APIs.

After specifying the API ID, click “Add API

»

”; the page will reload and display the new API at the bottom of the page. Click the title of the API to display the settings.

Specify:

		API Name: This is the short friendly name of the API; this is displayed to the user

		Short Description: The short description is displayed on the API Index page of your API Portal, in addition to the above name.

		Authentication Method: Specify either key-auth for authentication via http headers or oauth2 for API authentication using the OAuth 2.0 Client Credentials Flow. In the future, further authentication methods may follow.

		Required User Group: In case you specify a required user group, only users which belong to this user group will be able to even see the API in the API Portal.

		Subscription Plans: Tick the subscription plans you want to be available for this API. Note: DO NOT REMOVE PLANS AFTER YOU HAVE DEPLOYED THIS API. Removing API Plans which have active subscriptions will result in undefined behaviour of the API Portal. For a discussion of API Plans, see setting up plans.

Click Save at the bottom of the page to save your changes.

To edit the long description of the API, click the “API Long Description” button at the bottom of the API Panel.

Step 2: Add a Swagger file

Even though it’s not actually necessary to supply a Swagger file for your API, this is highly encouraged. After having saved (important) your changes in Step 1, you can now click the “Swagger file” button at the bottom of the API Panel.

This will open an editor for JSON; the editor is not really intended for actual editing, but you can use it to cut and paste the Swagger file from a different location into the API Portal configuration.

Note: It is advisable to set up continuous integration of Swagger files from your backend services into the configuration repository. In that case, you would not actually manually copy/paste the Swagger file into the configuration repository, but rather push it using CI/CD tooling. For further information on this topic, see setting up continuous deployment.

Step 3: Kong Configuration

The third and last (but not least) configuration part is the actual configuration of the API Gateway, which is Mashape Kong. In order to do this, click the “Kong Configuration” button at the bottom of the API Panel to display the settings of the API.

Basic Configuration

The basic configuration tells Kong where to actually find the backend service and under which request path on the API Host the API shall be reached.

		Upstream (backend) URL: The fully qualified URL to your actual backend service which the API Gateway proxies to. If the service starts at a specific URL prefix, you will need to add this here, too. Example: http://server.company.com/service/v2/endpoint.
		If you have more than one deployment environment, you can choose to use an environment variable for this setting. See also deployment environments.

		Request path: This is the path on the API Host under which your API will be reachable. Example: service/v2.

Example: Assuming you have specified the DNS name of the API Host to be api.company.com, and the settings otherwise as above (backend URL http://server.company.com/service/v2/endpoint and request path service/v2), then the following happens (with Strip Request Path checked): Calling https://api.company.com/service/v2/users/123456 will proxy the call to the backend service at http://server.company.com/service/v2/endpoint/users/123456. In case you will not have checked the Strip Request Path, the backend URL called will be http://server.company.com/service/v2/endpoint/service/v2/users/123456. This may be useful for specific user cases, but normally you will check the Strip Request Path option.

Plugin Configuration

The API Gateway, i.e. Mashape Kong [https://getkong.org], has a powerful plugin concept in place, which can also be used with the API Portal. Some of the Plugins which Kong provides [https://getkong.org/plugins] can be configured conveniently using the kickstarter, some others do not (yet) have explicit support.

For APIs, the following plugins can be configured using the kickstarter:

		Rate Limiting

		CORS

		Adding BasicAuth authentication (towards the backend)

		Adding a Forwarded header

See Configuring Kong Plugins for more informations.

In case you don’t want to define a plugin for the entire API, you will need to look at the plugin configuration of API Plans.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

deploying-locally.html

 Navigation

 		
 index

 		wicked.haufe.io latest documentation »

Deploying an API Portal locally

Docker docker docker.

TODOs

		[] Create a first draft of the page

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/github-step1-2.png
O Pullrequests Issues Gist

Application created successfully

Personal settings Authorized applications Developer applications
Profile

MyCompany API Portal - Dev
Account

DonMartin76 owns this application. Transfer ownership.

Emails
Notifications

0 users
Billng

Client ID
SSH and GPG keys 083dffeaddtef7749ee2
Security Client Secret

8aa5e4e500989da16915e4460177e06361b73764
OAuth applications

Revokeallusertokens ~ Reset client secret
Personal access tokens

Repositories Application logo

Organizati
rganizations Upload new logo

Saved replies

You can also drag and drop a picture from your computer.
Drag & drop

_images/environments-deployments.png
GIT CONFIG
REPO

—)

DEV PORTAL

TEST PORTAL

PROD PORTAL

NODE_ENV="dev”

NODE_ENV="test”

NODE_ENV="prod”

_images/plugin-basic-auth-env-var.png
PORTAL_APIS_PETSTORE_BASICAUTH

Authorization:Basic dXNIcjpwYXNzd29yZA=:

@

_static/up.png

_images/blue-green-5.png
APIS
GRI

V24
101.2.4

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_images/create-new-content.png
New Content

Specify a URI path to the new content you want to add, e.g. tutorials/using-sso ; do not specify the suffix (.nd or .jade), it will be added
automatically.

Content Type:

Markdown

/content/ Create New File

_images/google-step1-3.png
OAuth client

Here is your client ID
625855627159-e19v5563n8d41hh28sckéo2ul Snvoep2. apps. googleusercontent .con
Here is your client secret

YAIKF3helcLbuova1ErSabHK

Type e

_images/github-step2-1.png
©) GitHub

“ Use Github Authentication

Client ID

032092b200238fdbb01901232

Use environment variable PORTAL_AUTH_GITHUB_CLTENTID [Encrypt

Client Secret
0934809b90d0923def298983002993009deb2984378

Use environment variable PORTAL_AUTH_GITHUB_CLIENTSECRET @ Encrypt

Callback URL

https://domain.mycompany.comycallback/github

Use environment variable PORTAL_AUTH_GITHUB_CALLBACKURL [Encrypt

Get Callback URL from Portal Host

_images/static-config-git-build.png
PORTAL COMPONENTS

MAILER

2|1 &
Bl & CHATBOT
o 13
- o

g

KONG-ADAPTER
. - BUILD STEP
S CONFIG
z
&
S || PersisTENT
DATA

_images/deployment-architecture.png
VHOST portal

VHOST api
443
HAPROXY
3000 8000
3002]
PORTAL KONG ADAPTER free| KONG
8001
3001 l 5432 I
3003
PORTAL API MAILER POSTGRES
CHATBOT
3004]
WEBHOOKS

CONFIG
(VOLUME)

DYNAMIC
CONFIG
(VOLUME)

POSTGRES
DATA
(VOLUME)

APl

_images/google-step1-2.png
GoogleAPIs

API

EE

?

APl Manager

Dashboard
Library

Credentials

Credentials

“«
Create client ID

Application type
© Web application
Androld Learn more
Chrome App Learn more
108 Learn more
PlayStation 4
Other

MyCompany API Portal - Dev

Restrictions
Enter JavaScript origins, redirect URs, o both

Authorized JavaScript origins

For use with requests from a browser. This s the orgin URI of the client application. I can't contain a wildcard
(tp:* example.com) or a path (http://example.comysubdir). Ifyou'e using a nonstandard port,you must include itin
the origin URI

p://wwnw.example.com

Authorized redirect URls

For use with requests from a web server. This is the path in your application that users are redirected 10 afte they have.
authenticated with Google. The path willbe appended with the authorization code for access. Must have a protocol
Cannot contain URL fragments of relatve paths. Cannot be a public P address.

[https:srdomain. mycompany.comcallback/google|

_images/wicked-40.png

_images/wicked-auth-page-120.png

_static/plus.png

_static/ajax-loader.gif

_images/versioning-ci-cd.png
master

W

DEPLOY

DEV

TEST fmdin|

PROD

DEV

= PrROD

_images/plugin-basic-auth.png
Add Basic Authentication Header

Username: Password:

user password

{

“name”: "request-transformer”,

config": {
“add": {

eaders”: [

“$PORTAL _APIS_PETSTORE_BASICAUTH"

_images/example-content.png
Home APIs Applications Contact Signup Login

Jumbotron

title

This is the page title

Title and subtitle, and whether you want a restriction on the page or not, is defined in the JSON companion file.
subTitle

Container
This is an example
Write your markdown here.

« And have fun
« You can do whatever you want
« This is Markdown, man.

_images/dev-environments.png
DEV PORTAL

/APIS DEV DEV
DEV GATEWAY

TETRORTAL APISTEST
TEST

TEST GATEWAY

PROD PORTAL [
PROD

Y

PROD GATEWAY

_images/versioning-forks.png
REPO dev
DEPLOY

master

DEV

FORK test n
PULL

REQUEST

master

FORK prod

master

PROD

_images/github-step1-1.png
(9]

Personal settings
Profile

Account

Emals

Notifications

Billing

SSH and GPG keys
Security

OAuth applications
Personal access tokens
Repositories
Organizations

Saved replies

Pull requests Issues Gist

Register a new OAuth application

Application name
MyCompany API Portal - Dev

Something users wil recognize and trust

Homepage URL
https://domain.mycompany.com

The full URL to your application homepage

Application description

This is the Dev instance of the
API Portal for the Domain of

oo z

This is layed to all potential users of your application
Authorization callback URL
https://domain.mycompany.com/callback/github

Your application’s callback URL. Read our OAuth documentation for more information.

Register apj 8 cancel

_images/google-step2-1.png
Google

¥ Use Google Authentication

Client ID

625855627159-mqoh118qhBv0sShBd7pnBoe2taeigieu.apps.googleusercontent.com

Use environment variable PORTAL_AUTH_GOOGLE_CLTENTID [Encrypt

Client Secret

©b3eQ-IU2SBDrYgeWbhniNON

Use environment variable PORTAL_AUTH_GOOGLE_CLTENTSECRET @ Encrypt

Callback URL

https:/domain.mycompany.com/caliback/google

Use environment variable PORTAL_AUTH_GOOGLE_CALLBACKURL [Encrypt

Get Callback URL from Portal Host

_images/blue-green-4.png
APIS

_images/versioning-branches.png
dev

test

prod/master

DEPLOY

DEV

SIHONVYE

_images/backend-url-kickstarter.png
Basic Configuration

Name:
[potoe |

Upstream (backend) URL:
‘ hitp//petstore.swaggerio/v2 ‘

Use environment variable PORTAL_APTS_PETSTORE_API_UPSTREAM_URL [Encrypt

